Laiveko.ru

Медицина и здоровье
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Научный журнал Успехи современного естествознания ISSN 1681-7494 Перечень ВАК ИФ РИНЦ 0,791

Анфлераж — как метод для экстракции высококачественных эссенций

Благодаря содержанию биологически активных соединений растения семейства Яснотковые используются как лекарственные в медицине, как эфироносы в парфюмерии, как пряно-ароматические в пищевой промышленности и являются ценными медоносами. Представители семейства Яснотковые издавна широко использовались в народной и научной медицине. В большей степени их лечебные свойства обуславливаются наличием эфирных масел, которые накапливаются в растениях [1]. Однако в последнее время внимание ученых привлекают также антиоксидантные свойства растений данного семейства [2]. К соединениям с антиоксидантными функциями относятся и полифенолы. Полифенолы представляют собой многочисленный класс природных соединений, многообразие которых обуславливается главным образом строением агликона (степенью окисленности трехуглеродного фрагмента, положением бокового фенильного радикала, величиной гетероцикла и другими признаками), а также составом гликозидного фрагмента [3].

До настоящего времени разработка единственного стандартного метода для эффективной и быстрой экстракции полифенолов из матриц растений остается проблемой [4]. Выделяют несколько основных подходов: во-первых, это так называемые «традиционные методы», основанные на способности фенольных соединений хорошо растворяться в водно-спиртовых растворах, во-вторых, это методы, относящиеся к направлению «зеленой химии». К этой группе методов относятся ультразвуковая, микроволновая экстракция, экстракция сверхкритическими флюидами, СО2-экстракция [4–6].

Целью работы явилось исследование эффективности различных методов экстракции полифенолов (жидкостной водно-спиртовой, ультразвуковой водно-спиртовой, ультразвуковой мицеллярной) из растений семейства Яснотковые: мяты луговой, шалфея лекарственного, иссопа лекарственного, лаванды узколистной, чабера садового.

Материалы и методы исследования

В качестве объекта исследования использовали растения душицы обыкновенной (Origanum vulgare L.), мяты луговой (Mеntha arvеnsis L.), шалфея лекарственного (Salvia officinalis L.), иссопа лекарственного (Hyssopus officinalis L.), лаванды узколистной (Lavandula angustifolia Mill.), чабера садового (Satureia hortensis L.), собранные в период массового цветения на территории Ботанического сада БФУ им. И. Канта в 2016 г. Растения высушивали до постоянного веса при 60 °С, измельчали и хранили в темном месте при комнатной температуре.

Экстракцию полифенолов осуществляли классическим методом жидкостной экстракции с использованием водно-спиртовых растворов и методами, основанными на использовании ультразвука (с использованием в качестве экстрагентов водно-спиртовых растворов и водных растворов додецилсульфата натрия SDS). В качестве источника ультразвука использовали ультразвуковой гомогенизатор LABSONIC M (Sartorius, Германия).

Предварительно были подобраны оптимальные условия экстракции полифенолов данными методами из растительного материала, на примере душицы обыкновенной. Дизайн эксперимента осуществляли статистическому трехуровневому пятифакторному плану Бокса-Бенкена с использованием программного обеспечения Minitab 17 (MINITAB Inc., США). Бокс-Бенкен дизайн относится к группе методов, основанных на расчёте поверхностей отклика и позволяющих проводить исследования по оптимизации условий с наименьшим количеством экспериментов по сравнению с другими статистическими подходами [7]. Для жидкостной водно-спиртовой экстракции (ЖВСЭ) оптимальными являлись следующие параметры: рН – 3,0; температура – 60 °С; соотношение этанол: вода – 50,0 %; время – 48,7 мин; соотношение экстрагент: навеска – 31,3. Для ультразвуковой водно-спиртовой экстракции (УВСЭ): соотношение этанол: вода – 50,0 %; рН – 7,0; время – 15 мин; амплитуда – 80 %; цикл – 0,8 с. Для ультразвуковой мицеллярной экстракции (УМЭ): концентрация SDS – 86,4 ммоль/л; время – 15,0 мин; амплитуда – 63,8 %; цикл – 0,8 с; соотношение экстрагент: навеска – 10,0.

Эффективность экстракции фенольных соединений оценивали по суммарному содержанию полифенолов, которое определяли спектрофотометрическим методом [8]. Количественное определение полифенолов основано на реакции образования берлинской лазури. В кислой среде фенольные соединения стехиометрически восстанавливают гексацианоферрат (III) калия до гексацианоферрата (II) калия, который в присутствии ионов трехвалентного железа образует окрашенное соединение (берлинская лазурь) с максимумом поглощения при 720 нм. Определение оптической плотности проводили на спектрофотометре Shimadzu UV-3600 (Shimadzu, Япония).

Для каждого вида экстракции эксперимент повторяли три раза. В таблицах и на рисунках приведены средние значения содержания полифенолов, выраженные на грамм сухого веса, с указанием стандартного отклонения. Достоверность различий между средними оценивали по критерию Тьюкки – Крамера (HSD). Достоверно различимые средние на рисунках обозначены различными строчными латинскими буквами.

Результаты исследования и их обсуждение

На сегодняшний день отсутствует единственный стандартный метод эффективной и быстрой экстракции полифенолов из матриц растений. Это в первую очередь связано с тем, что полифенолы представляют собой широкий класс соединений, включающий такие группы, как мономерные фенольные соединения, оксибензойные кислоты, оксикоричные кислоты, кумарины, флавоноиды [3]. В данной работе исследовали возможность использования для извлечения суммы полифенолов из растительной матрицы трех методов: жидкостной водно-спиртовой, ультразвуковой водно-спиртовой, ультразвуковой мицеллярной экстракции. Результаты исследования экстракции полифенолов из растений мяты луговой представлены на рис. 1.

pop1.wmf

Рис. 1. Содержания полифенолов при использовании различных методов экстракции данных соединений из растений мяты луговой

pop2.wmf

Рис. 2. Содержания полифенолов при использовании различных методов экстракции данных соединений из растений шалфея лекарственного

pop3.wmf

Рис. 3. Содержания полифенолов при использовании различных методов экстракции данных соединений из растений чабера садового

Как видно из представленных на рис. 1 данных, максимальный выход полифенолов наблюдался при использовании ультразвуковой мицеллярной экстракции (22,3 ± 1,2 мг/г). Между жидкостной и ультразвуковой водно-спиртовой экстракцией достоверных различий не установлено. Уровень полифенолов при использовании данных методов составил от 16,8 до 18,2 мг/г.

На рис. 2 представлены результаты исследований экстракции полифенолов из растений шалфея лекарственного. Наименьший выход полифенолов (19,2 ± 1,2 мг/г) из растительной матрицы наблюдался при использовании «традиционного метода» экстракции – жидкостной водно-спиртовой. При этом достоверных различий для мицеллярной и водно-спиртовой ультразвуковой экстракции выявлено не было. Уровень полифенолов варьировал в пределах от 25,1 до 29,3 мг/г.

Аналогичные результаты получены и при исследовании экстракции полифенолов из растений чабера садового (рис. 3). Максимальное содержание полифенолов определено при использовании метода ультразвуковой водно-спиртовой экстракции и мицеллярной ультразвуковой экстракции (17,8 ± 1,5 и 18,2 ± 1,4 мг/г соответственно). Достоверно более низкие значения получены при экстракции полифенолов «традиционным» методом – 14,3 ± 0,78 мг/г.

На рис. 4 представлены результаты исследования экстракции полифенолов из растений иссопа лекарственного. Как видно из представленных на рис. 4 данных, достоверные различия в эффективности извлечения выявлены для всех трех видов экстракции. При этом максимальный выход наблюдался для ультразвуковой мицеллярной экстракции (42,7 ± 3,2 мг/г). Минимальное содержание полифенолов было определено при использовании жидкостной водно-спиртовой экстракции – 24,9 ± 1,4 мг/г. Также стоит отметить, что растения иссопа лекарственного отличались примерно в 2–3 раза более высоким уровнем полифенолов по сравнению с другими исследованными видами растений семейства Яснотковые.

На рис. 5 представлены результаты исследования экстракции полифенолов из растений лаванды узколистной. Данный вид растений характеризовался минимальным содержанием полифенолов. Их уровень не превышал 10 мг/г. Кроме того, при использовании различных подходов к экстракции полифенолов из растений данного вида не было уставлено достоверных различий.

Читать еще:  Бактериальные язвы роговицы

Как правило, при экстракции биологически активных соединений из растительной матрицы используют органические растворители, в частности растворы этанола или метанола. Однако развитие технологий так называемой «зеленой химии» основывается на постепенном отказе от такого рода веществ, поэтому в последнее время особое внимание при проведении процедур экстракции уделяется исследованиям возможности использования в качестве экстрагентов поверхностно-активных соединений и их мицеллярных растворов [9]. В ходе нашей работы было показано, что использование в качестве экстрагента растворов додецилсульфата натрия (SDS) позволяет эффективно проводить экстракцию полифенолов из пряно-вкусовых растений семейства Яснотковые.

pop4.wmf

Рис. 4. Содержания полифенолов при использовании различных методов экстракции данных соединений из растений иссопа лекарственного

pop5.wmf

Рис. 5. Содержания полифенолов при использовании различных методов экстракции данных соединений из растений лаванды узколистной

Активно также внедряется в практику экстрагирования биологически активных растительных компонентов использование ультразвукового воздействия, которое позволяет сократить разрушение термически неустойчивых соединений и уменьшить время экстракции без потери выхода нужного вещества. Так, показана эффективность использования ультразвука при экстракции полифенолов из апельсинов [10], косточек винограда [11], листьев шалфея [12]. В ходе проведенных нами исследований было показано, что применение ультразвука позволяет сократить время экстракции. Так, при использовании «традиционного» метода жидкостной экстракции для достижения максимального выхода полифенолов оптимальное время составляло около 50 минут, тогда как при ультразвуковой экстракции – 15 минут.

Таким образом, было показано, что при экстракции полифенолов из пряно-вкусовых растений семейства Яснотковые использование в качестве экстрагентов поверхностно-активных веществ в комбинации с ультразвуковой экстракцией позволяет повысить эффективность извлечения полифенолов из растительного материала, что особенно наглядно было продемонстрировано для растений с более высоким уровнем биологически активных веществ фенольной природы.

Эссенции

Водно-спиртовые экстракты используются для производства лекарственных средств для внешнего применения и косметических препаратов Dr. Hauschka.

Для приготовления эссенций WALA измельчают растения, свежесобранные в собственном саду, на собственной ферме, имеющей сертификат Demeter, а также растения, выращенные по принципам биодинамического сельского хозяйства, в других сельскохозяйственных производствах или правильным образом собранные в дикой природе.

Затем в измельчённые растения, помещенные в большую керамическую емкость, добавляют смесь холодной воды и небольшого количества спирта. На протяжении семи дней эссенция подвергается ритмическому воздействию света и движения, основанному на знаниях природных ритмов и ритмов человеческого организма. Каждое утро и каждый вечер сотрудники тщательно перемешивают смесь. В это время в смесь, которая обычно находится в темноте, попадает свет. Через семь дней проводится отжим и фильтрация эссенции. Затем к отфильтрованнымэссенциям добавляют небольшое количество золы, полученной из высушенного растительного остатка после отжима. Эссенции потом будут использовать для производства косметики Dr.Hauschka.

Масляные вытяжки

Вытяжки высушенных лекарственных растений в растительных маслах для производства лекарственных средств WALA и косметических препаратов Dr. Hauschka.

Для получения масляных вытяжек, высушенные лекарственные растения измельчаются и настаиваются в течение семи дней в растительном масле нагретом до 37 °C, что равно температуре человеческого тела. По утрам и вечерам смесь перемешивают, и, таким образом, вся сила лекарственного растения переходит в масло. По окончании этого процесса производится отжим и фильтрация.

Вытяжки из лекарственных растений

Ритмизированные водные экстракты лекарственных растений для косметических препаратов Dr. Hauschka.

Свежесобранные растения из сада лекарственных растений WALA измельчают, смешивают с водой и оставляют в таком виде на семь дней. Утром и вечером смесь подвергают воздействию ритмической смены света, температуры и движения. Как правило, через три с половиной дня растительные составляющие отжимают и превращают в золу. Следующие три с половиной дня ритмизируется сок растений. Через семь дней проводится фильтрация и к отфильтрованным эссенциям добавляют небольшое количество золы, полученной из растительных остатков после отжима.

Ритмизированные водные экстракты присутствуют , в таких косметических средствах, как Крем для лица «Роза» и Крем для лица «Роза лайт», а также в апульных препаратах — Косметическом средстве для ночного ухода и Косметическом средстве для чувствительной кожи.

Для косметики Dr. Hauschka метод производства водных ритмизированных экстрактов растений был усовершенствован и оптимизирован.

Отжатые растительные соки

Сок, отжатый из свежесобранных лекарственных растений для лекарственных средств WALA и препаратов Dr. Hauschka Med.

Цветы, листья и стебли подвергаются отжиму непосредственно после их сбора. Свежевыжатые растительные соки содержат в отличии от растительных экстрактов всю неразбавленную целостность и силу живого растения. В насыщенных соках содержится весь комплекс ингредиентов лекарственных растений. В этом секрет их особенной эффективности.

Эфирное масло

Самое ценное, что предлагает нам роза – чистое эфирное розовое масло.

Рано утром, пока еще густой тяжелый туман парит над горными долинами, а первые лучи солнца возвещают о новом дне, мужчины и женщины отправляются на сбор драгоценного сокровища дамасской розы – чудесно пахнущих цветов розы. Аккуратным поворачиванием цветка вокруг цветоножки снимается полностью раскрытый цветок вместе с чашечкой. Затем он укладывается в корзину из ивовых прутьев, которую сборщики носят на боку. Молчаливо собирают их женщины, двигаясь в тишине среди множества розовых кустов с цветами, чье богатство красок варьируется от нежных до ярких оттенков розового цвета, контрастируя с лучистым голубым утренним небом.

В этой спокойной утренней атмосфере женщины работают до полудня. Душистый урожай собирается в огромные мешки, вес которых может доходить до 12 килограммов. Еще до полудня урожай приносят в помещение для дистилляции, где из собранных цветов получают эфирное розовое масло следующим образом.

Нежные цветы розы сразу перерабатывают. После повторного взвешивания они попадают в котел для дистилляции и смешиваются с деминерализованной водой. Эта смесь роз и воды нагревается под давлением в 1 бар. Образуется водяной пар, который увлекает за собой душистые компоненты цветов розы. Он поднимается вверх и отводится в так называемый охлаждаемый змеевик. В нем находится спираль, в которой пар охлаждается, образующийся конденсат собирается на дне котла в виде »жирной воды», напоминающей молочную жидкость. В котле находится около 25-30 г »зеленого масла» (произведенного из около 450 кг цветов розы), которое получается при этом первом дистилляционном процессе.

»Зеленое масло» является самым концентрированным и, соответственно, самым ценным видом эфирного масла. О но распространяет интенсивный запах свежих цветов. Остаток жирной воды вновь дистиллируется. На этот раз из примерно 1600 литров жирной воды получается еще 75 г »желтого масла», масла немного менее концентрированного со слегка ослабленным ароматом розы.

Читать еще:  Основные причины для операции при неспецифическом язвенном колите

Оно декантируется вместе с »зеленым маслом», а потом фильтруется. В качестве конечного продукта получается ценное эфирное розовое масло, очень востребованное в производстве духов и косметических препаратов.

Изучение факторов, влияющих на процесс экстракции виноградных косточек в докритических и сверхкритических условиях

Разработаны технологии выделения БАВ на основе масло косточек винограда (Grape seed oil) методами докритической и сверхкритической флюидной СО2 экстракции. Установлено, что докритическия экстракция с размерами частиц 0,2-0,5 мм эффективно осуществляется при давлении 70 бар в течение 80 мин. с 9,0%-ным выходом. В сверхкритических условиях: размер частиц 0,2-0,5 мм, давление 250 бар, время 60 мин., выход 12,0 %.

ABSTRACT

It was developed isolation technology of BAC based on grape seed oil by subcritical and supercritical fluid CO2 extraction. Subcritical extraction efficacy was observed at 70-bar pressure during 80 min with 9.0% yield, when 0.2-0.5 mm particles was used. Optimal condition for supercritical extraction of 0.2-0.5 mm particles was as followed: 250-bar pressure during 60 min with 12.0% yield, when was used.

Ключевые слова: БAВ, масло косточек, докритическая и сверхкритическая флюидная экстракция, фильтрация.

Keywords: BAC, Grape seed oil, subcritical extraction, supercritical extraction, filtration.

На сегодняшний день масло из косточек винограда (Grape seed oil) имеет достаточно высокий спрос на мировом рынке и используется в пищевой, косметической и фармацевтической промышленности. Виноградное масло характеризуется высоким содержанием поли- и мононенасыщенных жирных кислот, которее не могут быть синтезированы организмом человека или животных, их можно получить только с пищей. Оно содержит также токоферолы (витамин Е), каротиноиды (провитамин витамина А), хлорофиллы и фенольные соединения, которые способствуют повышению антиоксидантной, иммуностимулирующей, противовоспалительной, бактерицидной, вяжущей и ранозаживляющей активностей. Таким образом, виноградное масло проявляет широкий спектр биологической активности [1].

Виноградное масло получают из виноградных косточек, содержащихся в выжимках винодельческих и соковых производств. Выход выжимок колеблется в пределах 20–25% от массы перерабатываемого винограда, а содержание виноградных косточек в выжимках составляет 25–30%. Косточки винограда содержат от 8 до 18% масла [2]. Сорт винограда и место произрастания, а также способ получения виноградного масла влияют на выход, качество получаемого продукта и область его использования [1-2].

Масло выделяют из косточек двумя методами: отжимом и экстракцией. Метод холодного прессования на практике используется редко из-за сравнительно небольшого выхода конечного продукта — менее 7% [3], хотя этот метод позволяет сохранить в нем все необходимые биологически активные вещества (БАВ), определяющие его полезные свойства. Экстракционный метод получения виноградного масла позволяет значительно увеличить его выход, однако этот метод обладает недостатками, связанными прежде всего с применением токсичных органических растворителей [3].

Одним из новейших и перспективных способов экстракции косточек винограда является экстракция сжиженными газами. Это альтернативная, современная и перспективная технология извлечения БАВ из растительного сырья [4].

Целью данной работы является разработка технологии выделения экстракта из косточек винограда с помощью СО2 –экстракции в докритическом и сверхкритическом флюидной экстракции выделения БАВ из косточек винограда. Исходя из поставленной цели основной задачей является изучение влияния на процесс экстракции таких факторов как степень измельчения косточек, выбор состояния экстрагента, докритическое, сверхкритическое давление в процессе экстракции, кратность и продолжительность экстракции, которые играют основную роль в получении высокого выхода масла.

Результаты экспериментов и их обсуждение

В качестве объекта исследования использовали косточки технических сортов винограда, полученные в сентябре 2018 г в ОАО «Паркент винзавод» Республики Узбекистан. Виноградные косточки извлекали из выжимок после их сушки при температуре 50±2°С.

Образцы масел получали докритической и сверхкритической CO2-экстракцией с использованием лабораторной экстракционной системы Deyang Strong Tech. Ltd (производитель КНР). Числовые показатели образцов виноградного масла определяли по методикам [5].

При проточном экстрагировании со скоростью, соответствующей свободному протеканию растворителя через экстрагируемое сырье, выход извлекаемых веществ при прочих равных условиях может быть увеличен в 1,5-3 раза и сокращен во времени в результате уменьшения размера частиц растительного сырья. Для эффективности процесса экстрагирования растительного сырья сжиженными газовами экстрагентами степень измельчения сырья имеет принципиальное значение. Для разрушения плотной оболочки косточки измельчали на лабораторной мельнице. Дробленку разделяли на лабораторных ситах, отбирая фракции с размерам частиц менее 0,2- 5,0 мм . 1 кг каждой фракции с размером частиц 2- 3 мм (опыт №1), во второй – 1- 2 мм (опыт №2), в третий – 0,5- 1 мм (опыт №3), в четвертый – 0,2- 0,5 мм (опыт №4), в пятым — менее 0,2 мм (опыт №5). Экстракцию проводили в экстракторе ёмкостью 5л при 30°С в докритических и при 50°С в сверхкритических условиях в течение 100 мин. Полученные СО2 — экстракты фильтровали и гравиметрический определяли выход экстрактивных веществ и масло (см. таблица-1).

Таблица 1.

Влияние размера частиц на выход экстрактивных веществ докритических и сверхкритических условиях СО2-экстракции

Способы получения, состав и антиоксидантная активность растительных экстрактов

Человечество всю свою историю использует растения в пищу, а также в лечебных и косметических целях. При приготовлении напитков, пищевых добавок, косметических изделий и лекарственных препаратов применяются различные технологии извлечения (экстракции) полезных веществ из тканей растений. Эти технологии различаются как по используемому экстрагенту, так и по методике экстракции и применяемому оборудованию. От методики экстракции зависит не только полнота извлечения веществ из сырья, но и степень их сохранности. Некоторые вещества (например, каротиноиды) не переносят нагрева выше 40 ͦС и действия как прямого, так и рассеянного света [1]. Другие вещества (флавоноиды, сапонины, терпеноиды) более термоустойчивы, однако для обеспечения высокого качества экстрактов проводит этот процесс при температурах выше 55 ͦС не рекомендуется. Из одного и того же сырья получаются принципиально разные по составу экстракты при использовании экстрагентов различной полярности (рис. 1 и 2).

Рис. 1. Хроматограммы экстрактов ромашки: 1 – воднопропиленгликолевого, 2 — полученного с использованием сверхкритического СО2. Хроматограф Shimadzu LC-20Prominence, детектор диодно-матричный SPDM20A, колонка Merck Superspher-100 RP-18, 4×250 мм. Элюирование градиентное, элюент ацетонитрил-вода, скорость потока 0.5 мл/мин.

В левой части хроматограмм, соответствующей выходу наиболее полярных соединений, имеются пики только у воднопропиленгликолевого экстракта, в то время как в правой части, соответствующей выходу малополярных соединений – только у СО2 – экстракта.Аналогичная картина наблюдается и при сравнении воднопропиленгликолевых и масляных экстрактов:

Рис. 2. Хроматограммы экстрактов календулы: 1 -воднопропиленгликолевого (Завод эндокринных ферментов, Россия), 2 — масляного экстракта (Завод эндокринных ферментов, Россия), 3 — масляного экстракта (Symrise, Германия).

Читать еще:  Симптомы болезни — боли в области сердца

Очень хорошими экстрагентами, извлекающими из тканей растений как гидро-, так и липофильные соединения, являются водно-этанольные смеси. Они с успехом применяются для производства экстрактов для приема внутрь и обработки полости рта, однако практически не применяются при производстве косметики из-за негативного воздействия на кожу и способности расслаивать косметические составы.

Поэтому для производства косметики применяются, главным образом, пропиленгликолевые и воднопропиленгликолевые экстракты. 1,2-пропиленгликоль является веществом, разрешенным для наружного и внутреннего применения, безопасность которого доказана многочисленными исследованиями. 1,2-пропиленгликоль при нанесении на кожу улучшает проникновение в нее действующих веществ косметических композиций.

Глицерин также является полностью биосовместимым веществом, более дешевым, чем 1,2-пропиленгликоль, однако, из-за высокой вязкости уступает последнему по экстрагирующей способности.

Сверхкритический (при давлении около 25 МПа) CO2 обладает превосходной способностью извлекать из тканей растений липофильные соединения в условиях максимального их сохранения, в результате чего получаются экстракты, не содержащие растворитель. Однако, гидрофильные соединения, среди которых многие ценные вещества, в частности, флавоноиды, таннины, углекислота не экстрагирует. Кроме того, такие экстракты имеют высокую себестоимость. Поэтому для извлечения жирорастворимых соединений чаще всего применяют экстракцию растительными маслами.

При использовании одного и того же экстрагента получаемые экстракты могут сильно различаться по составу и количеству экстрагированных веществ. При этом играют роль следующие факторы:

  • сорт, место произрастания сырья, почвенно-климатические условия, время его заготовки;
  • соблюдение технологии заготовки и хранения растительного сырья;
  • метод экстракции, соотношение массы сырья и экстрагента.

На рис. 3а. представлены хроматограммы полярных соединений (главным образом, полифенолов, в т.ч. флавоноидов) ромашки аптечной (Chamomilla recutita L.), произведенных на различных российских и известном зарубежном предприятиях. Очевидно, что все экстракты изготовлены из натурального качественного сырья. Российские экстракты по величине большинства основных пиков превосходят зарубежный аналог, хотя некоторых компонентов в последнем, все же, больше, что объясняется различиями состава компонентов в исходном сырье.

Рис. 3а. Хроматограмма полярных соединений ромашки (Chamomilla recutita L.) различных производителей: 1 – Symrise (Германия), 2 – 2Д-Фарма (Россия), 3 – Завод эндокринных ферментов (Россия).

Такая же картина наблюдается и на хроматограмме малополярных соединений ромашки:

Рис. 3б. Хроматограмма малополярных соединений ромашки (Chamomilla recutita L.) различных производителей: 1 – Symrise (Германия), 2 – 2Д-Фарма (Россия), 3 – Завод эндокринных ферментов (Россия).

Иногда на хроматограммах обнаруживаются пики веществ, не входящих в состав природных композиций изучаемого экстракта (пик 2а на рис. 3а).

Однако, в некоторых экстрактах экстрактивные вещества заявленных растений обнаруживаются в очень малых количествах. В частности, нами это было выявлено при сравнительном хроматографическом анализе двух экстрактов женьшеня – известного источника тонизирующих веществ, главными из которых являются гликозилированные формы сапонинов (рис. 4):

Рис. 4. Хроматограммы воднопропиленгликолевых экстрактов женьшеня различных производителей: 1 –Завод эндокринных ферментов (Россия), 2 – известная британская фирма. Пик 39.5 мин в экстракте 1 – консервант триклозан, пик 22.5 мин в экстракте 2 – консервант метилпарабен.

Экстракты растений (за исключением некоторых, содержащих сильнодействующие и ядовитые вещества), обладают высокой биосовместимостью, полинаправленностью действия и влияют на организм человека подобно внутренним метаболитам, чем обусловливается популярность использования растительных экстрактов в пищевой технологии, косметологии и медицине[2].

Со времени открытия т.н. «французского парадокса» [3] (обусловленный потреблением большого количества растительных антиоксидантов с пищей низкий уровень заболеваемости сердечно-сосудистыми заболеваниями при высоких факторах риска во Франции) ученые, промышленники и потребители стали проявлять возрастающий интерес к антиоксидантным свойствам пищевой, косметической и фармацевтической продукции. Слово «антиоксидант» превратилось из предложенного учеными ИХФ РАН Н.М Эмануэлем и Е.Б. Бурлаковой научного термина в популярный рекламный «бренд», эффективно повышающий продажи товаров и услуг, но далеко не всегда добросовестно и обоснованно используемый.

В 2004 году Главным санитарным врачом РФ утверждены «Рекомендуемые уровни потребления пищевых продуктов и биологически активных веществ» [4], в соответствии с которыми введены адекватные и верхние допустимые уровни суточного потребления АО растительного происхождения. Суммарное адекватное потребление фенольных АО составляет около 500 мг, верхнее допустимое – около 1100 мг. В США наиболее распространена точка зрения, что суточная норма потребления фенольных АО с пищей составляет около 1000 мг; при этом лишь 30% жителей США потребляют АО в количестве, соответствующем этой норме.

Тем не менее, большинство производителей пищевой и косметической продукции, использующие слово «антиоксидант» в рекламных целях, не имеют данных даже об общем количественном их содержании в исходном сырье и в готовой продукции.

В ходе наших более ранних исследований [5] мы установили на примере серии образцов белых и красных вин, что при количественном анализе общего содержания антирадикальных АО в объектах растительного происхождения наиболее адекватные результаты в сочетании с удобством применения дают методы, основанные на наблюдении инициированной люминесценции люминола и ДФПГ-тест. Последний был использован авторами данной работы и для количественного анализа содержания АО в экстрактах образцов тех же растений, в отношении экстрактов которых был ранее проведен хроматографический анализ.

При анализе суммарной концентрации АО в образцах некоторых отечественных экстрактов, производимых для нужд косметической промышленности (Завод эндокринных ферментов, Москва, см. таблицу) было установлено, что экстракты надземных частей растений содержат АО в количестве, равном их содержанию в высококачественных красных виноградных винах [6]. Тот факт, что масляный экстракт календулы лекарственной содержит АО значительно больше, чем воднопропиленгликолевый, объясняется присутствием в исходном подсолнечном масле значительного количества токоферолов и токотриенолов, главным образом, α-токоферола, которые обеспечивают большую часть наблюдаемой антиоксидантной активности масляных экстрактов.

Экстракты подземных частей растений, в частности, женьшеня, содержат гораздо меньше АО, чем экстракты надземных частей. Тонизирующее действие этого экстракта связано, главным образом, с гликозидами сапонинов [2], которые имеют стероидную химическую природу и антиоксидантными свойствами не обладают.

Таблица. Суммарная концентрация АО в образцах некоторых воднопропиленгликолевых и масляных экстрактов, производимых для нужд косметической промышленности (Завод эндокринных ферментов)

Таким образом, для обеспечения высокого качества продукции на основе растительного сырья и ее конкурентных преимуществ предприятиям необходимо при отборе поставщиков и выборе производственных технологий осуществлять контроль физико-химических параметров экстрактов и конечного продукта с применением современных аналитических методов, дающих адекватные представления об их свойствах. Проведенные исследования продемонстрировали, что производство экстрактов в странах Европейского Союза не является показателем их качества, и имеются превосходящие их российские аналоги.

  • Администратор
  • /
  • 2 мар. 2019 г.
  • /
  • /
  • 0
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector